Complex curves in hypercomplex nilmanifolds with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="double-struck">H</mml:mi></mml:math>-solvable Lie algebras

نویسندگان

چکیده

An operator $I$ on a real Lie algebra $A$ is called complex structure if $I^2=-Id$ and the $\sqrt{-1}$-eigenspace $A^{1,0}$ subalgebra in complexification of $A$. A hypercomplex triple structures $I,J$ $K$ satisfying quaternionic relations. We call nilpotent quaternionic-solvable there exists finite filtration by quaternionic-invariant subalgebras with commutative subquotients which converges to zero. give examples conjecture that all algebras are quaternionic-solvable. Let $(N,I,J,K)$ be compact nilmanifold associated an algebra. prove that, for general $L$ induced quaternions, no curves manifold $(N,L)$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian Complex Structures on Solvable Lie Algebras

We obtain a characterization of the Lie algebras admitting abelian complex structures in terms of certain affine Lie algebras aff(A), where A is a commutative algebra.

متن کامل

Solvable Lie algebras with $N(R_n,m,r)$ nilradical

In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.

متن کامل

Solvable Lie algebras with triangular nilradicals

All finite-dimensional indecomposable solvable Lie algebras L(n, f), having the triangular algebra T (n) as their nilradical, are constructed. The number of nonnilpotent elements f in L(n, f) satisfies 1 ≤ f ≤ n− 1 and the dimension of the Lie algebra is dim L(n, f) = f + 1 2 n(n − 1).

متن کامل

Classification of Solvable Lie Algebras

Several classifications of solvable Lie algebras of small dimension are known. Up to dimension 6 over a real field they were classified by G. M. Mubarakzjanov [Mubarakzjanov 63a, Mubarakzjanov 63b], and up to dimension 4 over any perfect field by J. Patera and H. Zassenhaus [Patera and Zassenhaus 90]. In this paper we explore the possibility of using the computer to obtain a classification of s...

متن کامل

solvable lie algebras with $n(r_n,m,r)$ nilradical

in this paper, we classify the indecomposable non-nilpotent solvable lie algebras with $n(r_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $n(r_n,m,r)$.we also prove that these solvable lie algebras are complete and unique, up to isomorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2023

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2023.104900