Complex curves in hypercomplex nilmanifolds with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="double-struck">H</mml:mi></mml:math>-solvable Lie algebras
نویسندگان
چکیده
An operator $I$ on a real Lie algebra $A$ is called complex structure if $I^2=-Id$ and the $\sqrt{-1}$-eigenspace $A^{1,0}$ subalgebra in complexification of $A$. A hypercomplex triple structures $I,J$ $K$ satisfying quaternionic relations. We call nilpotent quaternionic-solvable there exists finite filtration by quaternionic-invariant subalgebras with commutative subquotients which converges to zero. give examples conjecture that all algebras are quaternionic-solvable. Let $(N,I,J,K)$ be compact nilmanifold associated an algebra. prove that, for general $L$ induced quaternions, no curves manifold $(N,L)$.
منابع مشابه
Abelian Complex Structures on Solvable Lie Algebras
We obtain a characterization of the Lie algebras admitting abelian complex structures in terms of certain affine Lie algebras aff(A), where A is a commutative algebra.
متن کاملSolvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملSolvable Lie algebras with triangular nilradicals
All finite-dimensional indecomposable solvable Lie algebras L(n, f), having the triangular algebra T (n) as their nilradical, are constructed. The number of nonnilpotent elements f in L(n, f) satisfies 1 ≤ f ≤ n− 1 and the dimension of the Lie algebra is dim L(n, f) = f + 1 2 n(n − 1).
متن کاملClassification of Solvable Lie Algebras
Several classifications of solvable Lie algebras of small dimension are known. Up to dimension 6 over a real field they were classified by G. M. Mubarakzjanov [Mubarakzjanov 63a, Mubarakzjanov 63b], and up to dimension 4 over any perfect field by J. Patera and H. Zassenhaus [Patera and Zassenhaus 90]. In this paper we explore the possibility of using the computer to obtain a classification of s...
متن کاملsolvable lie algebras with $n(r_n,m,r)$ nilradical
in this paper, we classify the indecomposable non-nilpotent solvable lie algebras with $n(r_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $n(r_n,m,r)$.we also prove that these solvable lie algebras are complete and unique, up to isomorphism.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2023
ISSN: ['1879-1662', '0393-0440']
DOI: https://doi.org/10.1016/j.geomphys.2023.104900